This documentation is automatically generated by online-judge-tools/verification-helper
#include "data_structure/sparse_table.hpp"
#ifndef KK2_DATA_STRUCTURE_SPARSE_TABLE_HPP
#define KK2_DATA_STRUCTURE_SPARSE_TABLE_HPP 1
#include <cassert>
#include <vector>
namespace kk2 {
// require: op(x, x) = x for all x
template <class S, S (*op)(S, S), S (*e)()> struct SparseTable {
SparseTable() = default;
SparseTable(int n) : _n(n) {
log = 0;
while ((1 << log) < _n) log++;
table.assign(log + 1, std::vector<S>(_n));
}
SparseTable(const std::vector<S> &v) : _n(int(v.size())) {
log = 0;
while ((1 << log) < _n) log++;
table.assign(log + 1, std::vector<S>(_n));
for (int i = 0; i < _n; i++) table[0][i] = v[i];
build();
}
void build() {
assert(!is_built);
is_built = true;
for (int i = 1; i <= log; i++) {
for (int j = 0; j + (1 << i) <= _n; j++) {
table[i][j] = op(table[i - 1][j], table[i - 1][j + (1 << (i - 1))]);
}
}
}
template <class... Args> void init_set(int p, Args... args) {
assert(0 <= p && p < _n);
assert(!is_built);
table[0][p] = S(args...);
}
using Monoid = S;
static S Op(S l, S r) { return op(l, r); }
static S MonoidUnit() { return e(); }
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= _n);
assert(is_built);
if (l == r) return e();
int i = 31 ^ __builtin_clz(r - l);
return op(table[i][l], table[i][r - (1 << i)]);
}
S get(int i) const {
assert(0 <= i && i < _n);
assert(is_built);
return table[0][i];
}
// return r s.t.
// r = l or f(op(a[l], a[l+1], ..., a[r-1])) == true
// r = n or f(op(a[l], a[l+1], ..., a[r])) == false
template <bool (*f)(S)> int max_right(int l) const {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) const {
assert(0 <= l && l <= _n);
assert(f(e()));
assert(is_built);
if (l == _n) return _n;
int left = l - 1, right = _n;
while (right - left > 1) {
int mid = (left + right) >> 1;
if (f(prod(l, mid))) left = mid;
else right = mid;
}
return right;
}
// return l s.t.
// l = r or f(op(a[l], a[l+1], ..., a[r-1])) == false
// l = 0 or f(op(a[l], a[l+1], ..., a[r])) == true
template <bool (*f)(S)> int min_left(int r) const {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) const {
assert(0 <= r && r <= _n);
assert(f(e()));
assert(is_built);
if (r == 0) return 0;
int left = -1, right = r;
while (right - left > 1) {
int mid = (left + right) >> 1;
if (f(prod(mid, r))) right = mid;
else left = mid;
}
return right;
}
private:
int _n, log;
std::vector<std::vector<S>> table;
bool is_built = false;
};
template <class M> using SparseTableS = SparseTable<M, M::op, M::unit>;
} // namespace kk2
#endif // KK2_DATA_STRUCTURE_SPARSE_TABLE_HPP
#line 1 "data_structure/sparse_table.hpp"
#include <cassert>
#include <vector>
namespace kk2 {
// require: op(x, x) = x for all x
template <class S, S (*op)(S, S), S (*e)()> struct SparseTable {
SparseTable() = default;
SparseTable(int n) : _n(n) {
log = 0;
while ((1 << log) < _n) log++;
table.assign(log + 1, std::vector<S>(_n));
}
SparseTable(const std::vector<S> &v) : _n(int(v.size())) {
log = 0;
while ((1 << log) < _n) log++;
table.assign(log + 1, std::vector<S>(_n));
for (int i = 0; i < _n; i++) table[0][i] = v[i];
build();
}
void build() {
assert(!is_built);
is_built = true;
for (int i = 1; i <= log; i++) {
for (int j = 0; j + (1 << i) <= _n; j++) {
table[i][j] = op(table[i - 1][j], table[i - 1][j + (1 << (i - 1))]);
}
}
}
template <class... Args> void init_set(int p, Args... args) {
assert(0 <= p && p < _n);
assert(!is_built);
table[0][p] = S(args...);
}
using Monoid = S;
static S Op(S l, S r) { return op(l, r); }
static S MonoidUnit() { return e(); }
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= _n);
assert(is_built);
if (l == r) return e();
int i = 31 ^ __builtin_clz(r - l);
return op(table[i][l], table[i][r - (1 << i)]);
}
S get(int i) const {
assert(0 <= i && i < _n);
assert(is_built);
return table[0][i];
}
// return r s.t.
// r = l or f(op(a[l], a[l+1], ..., a[r-1])) == true
// r = n or f(op(a[l], a[l+1], ..., a[r])) == false
template <bool (*f)(S)> int max_right(int l) const {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) const {
assert(0 <= l && l <= _n);
assert(f(e()));
assert(is_built);
if (l == _n) return _n;
int left = l - 1, right = _n;
while (right - left > 1) {
int mid = (left + right) >> 1;
if (f(prod(l, mid))) left = mid;
else right = mid;
}
return right;
}
// return l s.t.
// l = r or f(op(a[l], a[l+1], ..., a[r-1])) == false
// l = 0 or f(op(a[l], a[l+1], ..., a[r])) == true
template <bool (*f)(S)> int min_left(int r) const {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) const {
assert(0 <= r && r <= _n);
assert(f(e()));
assert(is_built);
if (r == 0) return 0;
int left = -1, right = r;
while (right - left > 1) {
int mid = (left + right) >> 1;
if (f(prod(mid, r))) right = mid;
else left = mid;
}
return right;
}
private:
int _n, log;
std::vector<std::vector<S>> table;
bool is_built = false;
};
template <class M> using SparseTableS = SparseTable<M, M::op, M::unit>;
} // namespace kk2