This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/multiplicative_function/arbitrary_table.hpp"
#ifndef KK2_MATH_MULTIPLICATIVE_FUNCTION_ARBITRARY_TABLE_HPP
#define KK2_MATH_MULTIPLICATIVE_FUNCTION_ARBITRARY_TABLE_HPP 1
#include <cassert>
#include <vector>
#include "../lpf_table.hpp"
#include "../pow.hpp"
namespace kk2 {
template <class T, T (*f)(long long, long long)> struct MultiplicativeFunctionTable {
private:
static inline std::vector<int> _v_lpf{0, 0};
static inline std::vector<T> _table{0, 1};
public:
MultiplicativeFunctionTable() = delete;
static void set_upper(int m) {
if ((int)_table.size() > m) return;
int start = _table.size();
LPFTable::set_upper(m);
_v_lpf.resize(m + 1, 0);
_table.resize(m + 1);
for (int n = start; n <= m; ++n) {
int p = LPFTable::lpf(n);
if (p == n) {
_v_lpf[n] = 1;
_table[n] = f(p, 1);
} else {
if (n / p % p == 0) _v_lpf[n] = _v_lpf[n / p] + 1;
else _v_lpf[n] = 1;
int p_pw = pow<int>(p, _v_lpf[n]);
int q = n / p_pw;
T p_pw_val = f(p, _v_lpf[n]);
if (q == 1) {
_table[n] = p_pw_val;
} else {
_table[n] = _table[q] * p_pw_val;
}
}
}
}
static T val(int n) {
assert(n > 0);
if ((int)_table.size() <= n) set_upper(n);
return _table[n];
}
};
} // namespace kk2
#endif // KK2_MATH_MULTIPLICATIVE_FUNCTION_ARBITRARY_TABLE_HPP
#line 1 "math/multiplicative_function/arbitrary_table.hpp"
#include <cassert>
#include <vector>
#line 1 "math/lpf_table.hpp"
#include <algorithm>
#line 6 "math/lpf_table.hpp"
#include <numeric>
#line 8 "math/lpf_table.hpp"
namespace kk2 {
struct LPFTable {
private:
static inline std::vector<int> _primes{2}, _lpf{};
public:
LPFTable() = delete;
static void set_upper(int m, int reserve_size = 26355867) {
if ((int)_lpf.size() == 0) _primes.reserve(reserve_size);
if ((int)_lpf.size() > m) return;
m = std::max<int>(2 * _lpf.size(), m);
_lpf.resize(m + 1);
iota(_lpf.begin(), _lpf.end(), 0);
for (int i = 2; i <= m; i++) {
if (_lpf[i] == i and _primes.back() < i) _primes.emplace_back(i);
for (const long long p : _primes) {
if (p * i > m) break;
if (_lpf[i] < p) break;
_lpf[p * i] = p;
}
}
}
static const std::vector<int> &primes() { return _primes; }
template <typename It> struct PrimeIt {
It bg, ed;
PrimeIt(It bg_, It ed_) : bg(bg_), ed(ed_) {}
It begin() const { return bg; }
It end() const { return ed; }
int size() const { return ed - bg; }
int operator[](int i) const { return bg[i]; }
std::vector<int> to_vec() const { return std::vector<int>(bg, ed); }
};
static auto primes(int n) {
if (n >= (int)_lpf.size()) set_upper(n);
return PrimeIt(_primes.begin(), std::upper_bound(_primes.begin(), _primes.end(), n));
}
static int lpf(int n) {
assert(n > 1);
if (n >= (int)_lpf.size()) set_upper(n);
return _lpf[n];
}
static bool isprime(int n) {
assert(n > 0);
if (n >= (int)_lpf.size()) set_upper(n);
return n != 1 and _lpf[n] == n;
}
};
} // namespace kk2
#line 1 "math/pow.hpp"
#line 5 "math/pow.hpp"
namespace kk2 {
template <class S, class T, class U> constexpr S pow(T x, U n) {
assert(n >= 0);
S r = 1, y = x;
while (n) {
if (n & 1) r *= y;
if (n >>= 1) y *= y;
}
return r;
}
} // namespace kk2
#line 9 "math/multiplicative_function/arbitrary_table.hpp"
namespace kk2 {
template <class T, T (*f)(long long, long long)> struct MultiplicativeFunctionTable {
private:
static inline std::vector<int> _v_lpf{0, 0};
static inline std::vector<T> _table{0, 1};
public:
MultiplicativeFunctionTable() = delete;
static void set_upper(int m) {
if ((int)_table.size() > m) return;
int start = _table.size();
LPFTable::set_upper(m);
_v_lpf.resize(m + 1, 0);
_table.resize(m + 1);
for (int n = start; n <= m; ++n) {
int p = LPFTable::lpf(n);
if (p == n) {
_v_lpf[n] = 1;
_table[n] = f(p, 1);
} else {
if (n / p % p == 0) _v_lpf[n] = _v_lpf[n / p] + 1;
else _v_lpf[n] = 1;
int p_pw = pow<int>(p, _v_lpf[n]);
int q = n / p_pw;
T p_pw_val = f(p, _v_lpf[n]);
if (q == 1) {
_table[n] = p_pw_val;
} else {
_table[n] = _table[q] * p_pw_val;
}
}
}
}
static T val(int n) {
assert(n > 0);
if ((int)_table.size() <= n) set_upper(n);
return _table[n];
}
};
} // namespace kk2