This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/prime_factorize_table.hpp"
#ifndef KK2_MATH_PRIME_FACTORIZE_TABLE_HPP
#define KK2_MATH_PRIME_FACTORIZE_TABLE_HPP 1
#include <algorithm>
#include <cassert>
#include <vector>
#include "lpf_table.hpp"
namespace kk2 {
struct FactorizeTable {
private:
static inline std::vector<std::vector<std::pair<int, int>>> _factorize{{}};
public:
FactorizeTable() = delete;
static void set_upper(int m) {
if ((int)_factorize.size() > m) return;
int start = std::max<int>(2, _factorize.size());
LPFTable::set_upper(m);
_factorize.resize(m + 1);
for (int n = start; n <= m; ++n) {
int p = LPFTable::lpf(n);
if (p == n) {
_factorize[n] = {
{p, 1}
};
} else if (n / p % p == 0) {
_factorize[n] = _factorize[n / p];
_factorize[n][0].second++;
} else {
_factorize[n] = _factorize[n / p];
_factorize[n].insert(_factorize[n].begin(), {p, 1});
}
}
}
static const std::vector<std::pair<int, int>> &factorize(int n) {
assert(n > 0);
if ((int)_factorize.size() <= n) set_upper(n);
return _factorize[n];
}
static std::vector<int> divisors(int n) {
assert(n > 0);
if ((int)_factorize.size() <= n) set_upper(n);
std::vector<int> res = {1};
for (auto [p, k] : _factorize[n]) {
int sz = res.size();
for (int i = 0; i < sz; ++i) {
int mul = 1;
for (int j = 0; j < k; ++j) {
mul *= p;
res.push_back(res[i] * mul);
}
}
}
std::sort(res.begin(), res.end());
return res;
}
};
} // namespace kk2
#endif // KK2_MATH_PRIME_FACTORIZE_TABLE_HPP
#line 1 "math/prime_factorize_table.hpp"
#include <algorithm>
#include <cassert>
#include <vector>
#line 1 "math/lpf_table.hpp"
#line 6 "math/lpf_table.hpp"
#include <numeric>
#line 8 "math/lpf_table.hpp"
namespace kk2 {
struct LPFTable {
private:
static inline std::vector<int> _primes{2}, _lpf{};
public:
LPFTable() = delete;
static void set_upper(int m, int reserve_size = 26355867) {
if ((int)_lpf.size() == 0) _primes.reserve(reserve_size);
if ((int)_lpf.size() > m) return;
m = std::max<int>(2 * _lpf.size(), m);
_lpf.resize(m + 1);
iota(_lpf.begin(), _lpf.end(), 0);
for (int i = 2; i <= m; i++) {
if (_lpf[i] == i and _primes.back() < i) _primes.emplace_back(i);
for (const long long p : _primes) {
if (p * i > m) break;
if (_lpf[i] < p) break;
_lpf[p * i] = p;
}
}
}
static const std::vector<int> &primes() { return _primes; }
template <typename It> struct PrimeIt {
It bg, ed;
PrimeIt(It bg_, It ed_) : bg(bg_), ed(ed_) {}
It begin() const { return bg; }
It end() const { return ed; }
int size() const { return ed - bg; }
int operator[](int i) const { return bg[i]; }
std::vector<int> to_vec() const { return std::vector<int>(bg, ed); }
};
static auto primes(int n) {
if (n >= (int)_lpf.size()) set_upper(n);
return PrimeIt(_primes.begin(), std::upper_bound(_primes.begin(), _primes.end(), n));
}
static int lpf(int n) {
assert(n > 1);
if (n >= (int)_lpf.size()) set_upper(n);
return _lpf[n];
}
static bool isprime(int n) {
assert(n > 0);
if (n >= (int)_lpf.size()) set_upper(n);
return n != 1 and _lpf[n] == n;
}
};
} // namespace kk2
#line 9 "math/prime_factorize_table.hpp"
namespace kk2 {
struct FactorizeTable {
private:
static inline std::vector<std::vector<std::pair<int, int>>> _factorize{{}};
public:
FactorizeTable() = delete;
static void set_upper(int m) {
if ((int)_factorize.size() > m) return;
int start = std::max<int>(2, _factorize.size());
LPFTable::set_upper(m);
_factorize.resize(m + 1);
for (int n = start; n <= m; ++n) {
int p = LPFTable::lpf(n);
if (p == n) {
_factorize[n] = {
{p, 1}
};
} else if (n / p % p == 0) {
_factorize[n] = _factorize[n / p];
_factorize[n][0].second++;
} else {
_factorize[n] = _factorize[n / p];
_factorize[n].insert(_factorize[n].begin(), {p, 1});
}
}
}
static const std::vector<std::pair<int, int>> &factorize(int n) {
assert(n > 0);
if ((int)_factorize.size() <= n) set_upper(n);
return _factorize[n];
}
static std::vector<int> divisors(int n) {
assert(n > 0);
if ((int)_factorize.size() <= n) set_upper(n);
std::vector<int> res = {1};
for (auto [p, k] : _factorize[n]) {
int sz = res.size();
for (int i = 0; i < sz; ++i) {
int mul = 1;
for (int j = 0; j < k; ++j) {
mul *= p;
res.push_back(res[i] * mul);
}
}
}
std::sort(res.begin(), res.end());
return res;
}
};
} // namespace kk2