This documentation is automatically generated by online-judge-tools/verification-helper
#include "segment_tree/lazy.hpp"
#ifndef KK2_SEGMENT_TREE_LAZY_HPP
#define KK2_SEGMENT_TREE_LAZY_HPP 1
#include <cassert>
#include <functional>
#include <vector>
namespace kk2 {
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct LazySegmentTree {
public:
LazySegmentTree() : LazySegmentTree(0) {}
LazySegmentTree(int n) : _n(n) {
log = 0;
while ((1ll << log) < _n) log++;
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
}
template <class... Args> LazySegmentTree(int n, Args... args)
: LazySegmentTree(std::vector<S>(n, S(args...))) {}
LazySegmentTree(const std::vector<S> &v) : _n(int(v.size())) {
log = 0;
while ((1ll << log) < _n) log++;
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
build();
}
void build() {
assert(!is_built);
is_built = true;
for (int i = size - 1; i >= 1; i--) { update(i); }
}
template <class... Args> void init_set(int p, Args... args) {
assert(0 <= p && p < _n);
assert(!is_built);
d[p + size] = S(args...);
}
using Monoid = S;
static S Op(S l, S r) { return op(l, r); }
static S MonoidUnit() { return e(); }
using Hom = F;
static S Map(F f, S x) { return mapping(f, x); }
static F Composition(F l, F r) { return composition(l, r); }
static F HomUnit() { return id(); }
template <class... Args> void set(int p, Args... args) {
assert(0 <= p && p < _n);
assert(is_built);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = S(args...);
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
assert(is_built);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
assert(is_built);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() {
assert(is_built);
return d[1];
}
template <class... Args> void apply_point(int p, Args... args) {
assert(0 <= p && p < _n);
assert(is_built);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(F(args...), d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
template <class... Args> void apply_range(int l, int r, Args... args) {
assert(0 <= l && l <= r && r <= _n);
assert(is_built);
if (l == r) return;
F f = F(args...);
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
assert(is_built);
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
assert(is_built);
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
bool is_built = false;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
template <class A> using LazySegmentTreeS = LazySegmentTree<typename A::S,
A::S::op,
A::S::unit,
typename A::A,
A::act,
A::A::op,
A::A::unit>;
} // namespace kk2
#endif // KK2_SEGMENT_TREE_LAZY_HPP
#line 1 "segment_tree/lazy.hpp"
#include <cassert>
#include <functional>
#include <vector>
namespace kk2 {
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct LazySegmentTree {
public:
LazySegmentTree() : LazySegmentTree(0) {}
LazySegmentTree(int n) : _n(n) {
log = 0;
while ((1ll << log) < _n) log++;
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
}
template <class... Args> LazySegmentTree(int n, Args... args)
: LazySegmentTree(std::vector<S>(n, S(args...))) {}
LazySegmentTree(const std::vector<S> &v) : _n(int(v.size())) {
log = 0;
while ((1ll << log) < _n) log++;
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
build();
}
void build() {
assert(!is_built);
is_built = true;
for (int i = size - 1; i >= 1; i--) { update(i); }
}
template <class... Args> void init_set(int p, Args... args) {
assert(0 <= p && p < _n);
assert(!is_built);
d[p + size] = S(args...);
}
using Monoid = S;
static S Op(S l, S r) { return op(l, r); }
static S MonoidUnit() { return e(); }
using Hom = F;
static S Map(F f, S x) { return mapping(f, x); }
static F Composition(F l, F r) { return composition(l, r); }
static F HomUnit() { return id(); }
template <class... Args> void set(int p, Args... args) {
assert(0 <= p && p < _n);
assert(is_built);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = S(args...);
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
assert(is_built);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
assert(is_built);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() {
assert(is_built);
return d[1];
}
template <class... Args> void apply_point(int p, Args... args) {
assert(0 <= p && p < _n);
assert(is_built);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(F(args...), d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
template <class... Args> void apply_range(int l, int r, Args... args) {
assert(0 <= l && l <= r && r <= _n);
assert(is_built);
if (l == r) return;
F f = F(args...);
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
assert(is_built);
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
assert(is_built);
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
bool is_built = false;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
template <class A> using LazySegmentTreeS = LazySegmentTree<typename A::S,
A::S::op,
A::S::unit,
typename A::A,
A::act,
A::A::op,
A::A::unit>;
} // namespace kk2